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Discuss fundamental computational complexity issues for algorithms
for solving linear programming problems.

f (n) denotes ” the total number of elementary operations required
by the algorithm to solve the problem of size n”.

f (n) = O
(
nk)⇔ ∃τ > 0 : f (n) ≤ τnk : Polynomial-time

(theoretically efficient).

f (n) = O (kn)⇔ ∃τ > 0 : f (n) ≤ τkn: exponential growth
(bad!). e.g.: simplex algorithm.

There exist theoretically efficient algorithms for LP problems:

Khachian (no practical value).
Karmarkar (promising).
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Consider the LP optimization problem:

minimize z(x) = cx

s. to Ax = b

Rn 3x ≥ 0

Data: A ∈ Rm×n; c ∈ Rn; b ∈ Rm with m, n ≥ 2.

size: (m, n, L), where L is the input length: the number of binary
bits required to record all the data of the problem (here log = log2):

L =
{

1 +
⌈
log(1 + m)

⌉}
+
{

1 +
⌈
log(1 + n)

⌉}
+
∑
j

{
1 +

⌈
log(1 + |cj |)

⌉}
+
∑
i

∑
j

{
1 +

⌈
log(1 + |aij |)

⌉}
+
∑
i

{
1 +

⌈
log(1 + |bi |)

⌉}
.
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We are only required to determine a function g (m, n, L) in terms of
(m, n, L) such that for some sufficiently large constant τ > 0, we have

f (n,m, L) ≤ τg (m, n, L). i.e., O (g (m, n, L)).

Example: For algorithm actually involving a maximum of
f (n,m) = 6m2n + 15mn + 12m is O

(
m2, n

)
.

Optimization Problem

maximize z(x) = cx

s. to Ax ≤ b

x ≥ 0

Decision Problem

Given c , b and A (of the appropriate
dimensions) and given rational
number K , does there exist a
rational vector x such that Ax = b,
x ≥ 0, and cx ≤ K?

Theorem

polynomial-time algorithms for optimization problems ⇔ those for decision
problems.
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Béatrice Byukusenge



POLYNOMIAL COMPLEXITY ISSUES
COMPUTATIONAL COMPLEXITY OF THE SIMPLEX ALGORITHM

KARMARKAR’S PROJECTIVE ALGORITHM

Dantzig introduces the simplex algorithm.

intuition-based reaction: the algorithm would not prove to be very
efficient.

surprisingly: in practice, this method performes exceedingly well.

Theoretically, the fact is that the algorithm is entrapped in the potentially
combinatorial aspect of having to examine up to (for n > m):(

n

m

)
>
( n

m

)m
vertices.

Hence the plausibility of a potential exponential order of effort for
some problems.
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Example: 1971 Klee-Minty problems: Feasible region is a suitable
distortion of the n-dimensional hypercube in Rn which has 2n vertices.

Problem (ε ∈ (0, 1/2))

Maximize xn

s. to 0 ≤ x1 ≤ 1

εxj−1 ≤ xj ≤ 1− εxj−1

(for j = 2, . . . , n)

xj ≥ 0, j = 1, . . . , n.

Transformedd Problem (θ = 1/ε)

Maximize
n∑

j=1

yj

s. to y1 ≤ 1

yj + 2

j−1∑
k=1

yk ≤ θj−1

(for j = 2, . . . , n)

yj ≥ 0, j = 1, . . . , n.

where y1 = x1, yj = (xj − εxj−1) /εj−1 for j = 2, . . . , n.

2n − 1 iterations to visit all the 2n vertices.
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In 1984 Karmarkar (AT&T Bell Laboratories) proposed a new
polynomial-time algorithm for LP problems. This algorithm addresses LP
problems of the following form:

Minimize z = cx

s. to Ax = 0

1x = 1 (LP-K)

x ≥ 0

where A ∈ Rm×n, with m, n ≥ 2, c,A integers and 1 is a row vector of n
ones with the following two assumptions:

(A1): x0 =
(
1
n , . . . ,

1
n

)T
is feasible.

(A2): z∗ = 0.
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Any general LP problem can be (polynomially) cast in this form through
the use of artificial variables, an artificial bounding constraint, and
through variable redefinitions.

Remark: Under assumptions (A1) and (A1), Problem (LP − K ) is
feasible and bounded, and hence, has an optimum.
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Feasible region: K = {Ax = 0} ∩ {Sx {x : 1x = 1, x ≥ 0}}

Béatrice Byukusenge



POLYNOMIAL COMPLEXITY ISSUES
COMPUTATIONAL COMPLEXITY OF THE SIMPLEX ALGORITHM

KARMARKAR’S PROJECTIVE ALGORITHM

Summary of Karmarkar’s Algorithm

INITIALIZATION
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MAIN STEP
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OPTIMAL ROUNDING ROUTINE
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Thank you for your attention!

Béatrice Byukusenge


	 POLYNOMIAL COMPLEXITY ISSUES 
	COMPUTATIONAL COMPLEXITY OF THE SIMPLEX ALGORITHM
	KARMARKAR'S PROJECTIVE ALGORITHM

